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Acoustic waves can be amplified in a gas that has a nonequilibrium energy distribution 
among its internal degrees of freedom and is subjected to chemical reactions, external ir- 
radiation, electrical discharges, etc. [1-4]. This phenomenon magnifies the role of non- 
linear effects and leads to the formation of shock waves [5-7]. The generation and propaga- 
tion of shock waves are of major importance, because their occurrence in the active medium 
of gas lasers can cut off emission [8] and significantly lower the efficiency of chemical 
reactions in plasmatrons [9]. 

Here we investigate aspects of the propagation of unsteady weak disturbances in a gas 
when energy is transferred into the molecular vibrational degrees of freedom; we also deter- 
mine the conditions for generation of a shock wave and the laws governing its evolution with 
time. We devote special attention to the important practical case of variable background. 
We obtain a solution to the problem of the evolution of a steady-state nonlinear disturbance 
in supersonic flow of a vibrationally nonequilibrium gas when energy is transferred into in- 
ternal degrees of freedom in a layer of finite width. We investigate short waves, whose 
interaction time with the gas particles is much smaller than the characteristic relaxation 
time ("quasifrozen" approximation). Long waves, for which the presence of a relaxation pro- 
cess is equivalent to additional bulk viscosity and the basic mathematical apparatus is the 
Burgers equation ("quasiequilibrium" approximation) has been studied previously [7, I0]~ 

One-dimensional gas flows with energy input into the vibrational degrees of freedom are 
described by the system of equations 
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H e r e  p,  p, and u a r e  t h e  p r e s s u r e ,  d e n s i t y ,  and v e l o c i t y  o f  t h e  g a s ,  a 2 = y p / p ,  ~ i s  t h e  
" f r o z e n "  a d i a b a t i c  i n d e x ,  e v i s  t h e  s p e c i f i c  e n e r g y  of  t h e  v i b r a t i o n a l  d e g r e e s  o f  f r e e d o m ,  
v = 0 .1  f o r  p l a n a r  a x i s y ~ m n e t r i c a l  gas  f l o w s ,  I = I ( t )  i s  t h e  s p e c i f i c  power o f  t h e  e x t e r n a l  
e n e r g y  s o u r c e  c r e a t e d  by ,  f o r  example ,  i r r a d i a t i o n ,  and ~ = c o n s t .  We u se  t h e  r e l a t i o n s  
c o r r e s p o n d i n g  t o  a h a r m o n i c  o s c i l l a t o r  [11]  f o r  t h e  e q u i l i b r i u m  v i b r a t i o n a l  e n e r g y  ev* and 
t h e  r e c i p r o c a l  r e l a x a t i o n  t ime  ~: 

e*=  ~ / ( e x p  ( % I T )  - -  t), o, = k~  exp (-- k~T-" 9 (1) 

(R i s  t h e  gas  c o n s t a n t ,  T i s  t h e  t e m p e r a t u r e  o f  t r a n s l a t i o n a l  d e g r e e s  o f  f r e e d o m ,  8 v i s  a 
c h a r a c t e r i s t i c  v i b r a t i o n a l  t e m p e r a t u r e ,  and k l  and k 2 a r e  d i m e n s i o n e d  p o s i t i v e  c o n s t a n t s ,  
which  depend on t h e  p r o p e r t i e s  o f  t h e  gas  and whose s p e c i f i c  v a l u e s  may be found  in  [ 1 1 ] ) .  

We c o n s i d e r  t h e  p r o p a g a t i o n  o f  an a c o u s t i c  p u l s e  h a v i n g  an a r b i t r a r y  waveform in  a non-  
moving homogeneous g a s .  The s t a t e  o f  t h e  gas  c h a n g e s  w i t h  t ime  u n d e r  t h e  i n f l u e n c e  o f  ex-  
t e r n a l  r a d i a t i o n  a c c o r d i n g  t o  t h e  s y s t e m  

t p0_ 0 ~. 
OP ~ o oo Po 
ot  = po (? _ 1) F ~ J I (~) d~. e v =  ~v0--  (~-t)p0 + (2) 

0 

The superscript zero is used everywhere to indicate parameters describing the unperturbed 
state of the gas (background), and the subscript zero refers to data at t = 0. We rewrite 
the basic system of equations in the characteristic form 
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dl,2( f dp ) - + - u ~ a, dt U :i:: "~ -~ ~ ('~-- I) Fa -- vauT' dl'2Xdt 

d-7 P-- a~dp = p ( ? - - t ) F ,  ~ e v = I - - F ~  -dT-=U. 

We seek a solution in the form u = u'(x, t), p = p~ = p'(x, t), ... (the prime re- 
fers to perturbations of the parameters of the gas). We assume that the wave disturbance 
is short, so that the same relations are applicable in the perturbed zone as at a weak shock 

wave [12, 13]: 
# 

P '  = P~176 a~ ' = p~ e v = 0. (4 )  

The a p p r o x i m a t i o n  (4 )  h a s  t h e  p h y s i c a l  s i g n i f i c a n c e  t h a t  t h e  i n f l u e n c e  o f  r e f l e c t e d  
waves  g e n e r a t e d  by a t r a n s m i t t e d  s h o r t  wave ,  i . e . ,  t h e  a c o u s t i c a l  s e c o n d  f a m i l y ,  t h e  e n t r o p y  
wave ,  and t h e  wave a s s o c i a t e d  w i t h  t h e  e x c i t a t i o n  o f  i n t e r n a l  d e g r e e s  o f  f r e e d o m ,  can  be  
d i s r e g a r d e d .  I n d e e d ,  t h e  a m p l i t u d e s  o f  t h e  r e f l e c t e d  waves  a r e  p r o p o r t i o n a l  t o  t h e i r  t r a n s -  
m i s s i o n  t i m e s  t h r o u g h  t h e  d i s t u r b e d  zone ,  i . e . ,  t o  t h e  r e s p e c t i v e  q u a n t i t i e s  X/2a  ~ and X/a ~ 
(X i s  t h e  w a v e l e n g t h ) .  L i n e a r i z i n g  Eqs .  ( 3 ) ,  we r e a d i l y  e s t i m a t e  t h e  c o r r e c t i o n s  o f  o r d e r  
X t o  Eqs .  (4 )  and t h e  t e r m s  o f  o r d e r  a s s o c i a t e d  w i t h  t h e s e  c o r r e c t i o n s  in  t h e  f i r s t  e q u a t i o n  
o f  t h e  s y s t e m  (3 )  when t h e  u p p e r  s i g n  i s  c h o s e n  i n  i t  ( s e e  [ 4 ] ) .  The r e q u i r e m e n t  t h a t  t h e  
c o r r e c t i o n s  a s s o c i a t e d  w i t h  t h e  f i n i t e n e s s  o f  X i n  c o m p a r i s o n  w i t h  t e r m s  n o t  c o n t a i n i n g  X 
mus t  be  s m a l l  y i e l d s  a s y s t e m  o f  i n e q u a l i t i e s ,  wh ich  can  be  r e g a r d e d  a s  t h e  c r i t e r i o n  o f  
" s h o r t n e s s "  o f  t h e  wave .  

D r o p p i n g  t h e  s u p e r s c r i p t  z e r o ,  we o b t a i n  

~;a s 1l" ? - - 2  1 + 

vaa 1' ? -- t "va 4a 

as 

Substituting Eq. 
grating, we have 

(4) in the first equation (3), in which the upper sign is chosen, and inte- 

l 

~' (~o, t) = uo (~ )  t p  ) ~ (0, ~~ (Xo, t) = ~o + ~ ~o (~) <~, 
0 

(6)  

The s o l u t i o n  i s  w r i t t e n  i n  p a r a m e t r i c  f o r m ;  x ~  t )  g i v e s  t h e  a c o u s t i c a l  c h a r a c t e r i s -  
t i c s  o f  t h e  f i r s t  f a m i l y ,  wh ich  c o r r e s p o n d  t o  t h e  b a c k g r o u n d ;  u 0 '  ( x0 )  = u ' ( x 0 ,  0 ) .  The v e -  

i . �9 �9 0 ~ / 2  locity u of the gas in the wave remaxns small under the condltlon ~(t)(x0/x ) ~ i. If 
the inequality A(t) ~ 0 (t > 0) holds, the disturbances do not grow. This inequality, which 
restricts the background parameters, can be regarded as the sufficient condition for stabil- 
ity of the initial state of the gas under disturbances of the given type. The derivative 
dt/d~ has the significance of the characteristic decay time of a plane wave. 

We now take into account the nonlinear effects associated with wave propagation, retain- 
ing first-order small terms in the equation for the acoustical characteristics: 

d z ~ t  = a ~ + ~ + t)u'12. (7 )  

S u b s t i t u t i n g  Eq. (6 )  in  (7 )  and i n t e g r a t i n g ,  we o b t a i n  

f 

x (X o, t) = x o + S a~ (~) d~ -t- u~ (xo) X (x o, t), 
o 
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t 

3o  O( o (8) 

The equation for the envelope of the family of characteristics (8) 8x/ax 0 = 0 can be written 
in the form 

+ (du~/dxo) X (%, t) = 0 ( 9 ) 

( i n  t h e  c a s e  o f  a c y l i n d r i c a l  wave i t  i s  assumed t h a t  t h e  c h a r a c t e r i s t i c  w a v e l e n g t h  i s  s m a l l -  
e r  t h a n  t h e  d i s t a n c e  f rom t h e  wave f r o n t  t o  t h e  symmetry a x i s ) .  The minimum v a l u e  o f  t t h a t  
s a t i s f i e s  Eq. (9 )  c o r r e s p o n d s - t o  t h e  t ime  o f  shock  i n i t i a t i o n ,  and t h e  c o r r e s p o n d i n g  v a l u e  
o f  x0 c o r r e s p o n d s  t o  t h e  i n i t i a l  p o i n t  o f  t h e  c h a r a c t e r i s t i c  a t  which  t h e  shock  wave i s  gen-  
e r a t e d .  

I t  has  been shown [ 5 - 7 ]  t h a t  a c o m p r e s s i o n  d i s t u r b a n c e  p r o p a g a t i n g  in  a v i b r a t i o n a l l y  
n o n e q u i l i b r i u m  gas  does  n o t  g e n e r a t e  a shock  wave in  e v e r y  c a s e .  I n  f a c t ,  i f  t h e  i n t e g r a l  
X i n t r o d u c e d  in  Eq. (8)  c o n v e r g e s  in  t h e  l i m i t  t § ~, t h e  f o r m a t i o n  o f  a shock  wave r e q u i r e s  
t h a t  t h e  i n i t i a l  p r o f i l e  u 0 ' ( x o )  c o n t a i n  i n t e r v a l s  o f  l a r g e  d e c a y :  

i 

' d~--s176 - lim $. (i0) 
dXo t ~  "~ 

If the initial profile does not have such intervals, a shock wave is not generated~ When 
the integral X diverges in the limit t + ~, any compression wave generates a shock wave. 

It must be emphasized that when the behavior of the function X(t) [or~ (t)] is speci- 
fied beforehand, it is always possible to choose a corresponding behavior of the power of 
the external radiation I = l(t). Thus, the specification of the function A(t), in terms 
of which X and ~ are expressed, with Eqs. (3) taken into account, leads to a system of two 
ordinary differential equations in p~ and an integral of l(t) that satisfies the condi- 
tions of the existence and uniqueness theorem. 

The path of the shock wave crosses different characteristics at different times. The 
set of their initial points x0 can be regarded as a Lagrangian coordinate system associated 
with the characteristics. If the initial point x0 of the characteristic crossing the path 
of the shock wave at time t is indicated for every such t, the law of motion x0(t) of the 
shock wave is obtained in the coordinate system associated with the characteristics. The 
replacement of x0 by the law x0 = x0(t) in Eqs. (6) and (7) makes it possible to find the 
instantaneous amplitude of the discontinuity [u'](t) and the law governing its motion x = 
Xs(t). The function x0(t) is derived from the equation 

(Ox/Oxo)/(dxoMt) + Ox/Ot = D. (11)  

Here D i s  t h e  shock  wave v e l o c i t y ,  which  i s  e q u a l  t o  h a l f  t h e  sum o f  t h e  c h a r a c t e r i s t i c  
v e l o c i t i e s  b e f o r e  and a f t e r  t h e  d i s c o n t i n u i t y  [ 1 5 ] ,  a x / a t  i s  g i v e n  by Eq. ( 7 ) ,  and ax /sx0  
i s  g i v e n  by Eq. ( 8 ) .  S u b s t i t u t i n g  t h e  e x p r e s s i o n s  f o r  D, a x / a t ,  and a x / a x  0 in  Eq. (11)  
and m u l t i p l y i n g  by u 0 ' ( x 0 ) ,  w i t h i n  t h e  assumed e r r o r  l i m i t s  we o b t a i n  an e q u a t i o n  in  t o t a l  
d i f f e r e n t i a l s ,  whose s o l u t i o n  has  t h e  form 

~02 
2 ~ u~(~)d~ = X(%,t )  u~ ~ (%). (12)  

X 0 

E q u a t i o n  (12)  g i v e s  t h e  law o f  m o t i o n  x 0 ( t )  o f  t h e  shock  wave in  e x p l i c i t  fo rm in  t h e  c o o r -  
d i n a t e  s y s t e m  a s s o c i a t e d  w i t h  t h e  c h a r a c t e r i s t i c s ;  x02 = x 0 ( 0 ) .  The s p e c i f i c  form o f  t h e  
f u n c t i o n  x 0 ( t )  can be d e t e r m i n e d  by s p e c i f y i n g  a t  t h e  i n i t i a l  t i m e  t h e  waveform of  t h e  d i s -  
t u r b a n c e  u 0 ' ( x 0 ) ,  a t  wh ich  c o n s t r a i n t s  do n o t  a c c u m u l a t e  in  Eq. ( 1 2 ) .  

As an example ,  we c o n s i d e r  a d i s t u r b a n c e  t h a t  has  a t r i a n g u l a r  waveform a t  t = 0: 
u0 '  = k(x0 - x 0 i ) ,  x0 ~ x02,  k = c o n s t  ( F i g .  1 ) ;  a d i s c o n t i n u i t y  o f  a m p l i t u d e  u 0 ' ( x 1 2 )  ex-  
i s t s  a t  t h e  p o i n t  x02- In  t h e  c a s e  v = 1 we assume t h a t  t h e  w a v e l e n g t h  xo2 - x0~ i s  much 
s m a l l e r  t h a n  t h e  d i s t a n c e  x01 f rom t h e  symmetry  a x i s ,  so t h a t  t h e  dependence  o f  x0 on t can 
be i g n o r e d  in  t h e  f a c t o r  ( x 0 / x ~  v /2  in  Eqs.  (6 )  and ( 8 ) ,  and we can l e t  xo = x02 ( o r  x 0 = 
x 0 1 ) ,  whereupon X = X ( t ) .  D e t e r m i n i n g  t h e  f u n c t i o n  x 0 ( t )  f rom Eq. (12)  and s u b s t i t u t i n g  
i t  in  Eqs.  (6 )  and ( 8 ) ,  we o b t a i n  
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Fig. 1 

t 

~o~- ~ol + + , x~(t)=x~ a~ V i ~  (t) 
0 

(x~ [ l  --1- 0 (u;)] .  ( 14 )  
[u'l (t) = \~/ V ~  

I t  i s  e v i d e n t  f r o m  Eqs .  ( 1 2 ) - ( 1 4 )  t h a t  t h e  c o n v e r g e n c e  o f  t h e  i n t e g r a l  X in  t h e  l i m i t  
t ~ ~ plays a decisive role. At the initial time, let u0'(x 0) > 0 for x01 < x0 < x02, and 
let u0'(x01) = 0. If the integral X converges, Eq. (12) gives x0(t) + x0, > x01 in the 
limit t + w. This means that the characteristic beginning at the point x0, is an asymptote 
of the path of the shock wave. The asymptotic (for t + ~) shock decay law is given by Eq. 
(6) after the replacement of its right-hand side x 0 by x0,. Consequently, to within a con- 
stant factor, the shock wave behaves like an acoustic (linear) wave at large t. The speci- 
fic value of x0, can be obtained by passing to the limit t + ~ in Eq' (12). For a triangu- 
lar waveform 

Xo, = Zol + (Xo2 - Xol)/ ] / 1  + kX ( ~  ). ( 1 5 )  

I f ,  on t h e  o t h e r  h a n d ,  t h e  i n t e g r a l  X d i v e r g e s  in  t h e  l i m i t  t + ~,  none  o f  t h e  c h a r a c t e r i s -  
t i c s  can  s e r v e  a s  an a s y m p t o t e  f o r  t h e  p a t h  o f  t h e  s h o c k  wave ,  and t h e  s h o c k  d e c a y  law d i f -  
f e r s  qualitatively from the acoustic law (6). The length of the waveform of the disturbance 
next to the discontinuity grows without bound, so that Eqs. (4)-(15) are invalid at not 
too large t. 

The theory developed above can be used to describe the evolution of a periodic plane 
wave if its half-period I satisfies the system (5). We note that the length of the half- 
period of such a wave is invariant [16], whereas the length of a solitary wave increases 
with time. If Eq. (i0) holds at t = 0, discontinuities are subsequently formed in a peri- 
odic wave, which evolves into a sawtooth. In this case the law governing the motion of the 
shock wave in the coordinate system associated with the characteristics x0(t) is determined 
from the equation x02 - x0 = u0'(x0)X(t). As a result, in place of Eqs. (13) and (14) we 
have 

t 

~0 (X02) ~ ( ~ ) 
! 

x~(t) : Xo2 +)a~ [u'] (t) = i + kX (t)" (16)  
0 

We now consider some specific problems, for which certain simplifications permit the 
system of equations for the background parameters (3) to be integrated, and the behavior 
of the integral X in the limit t + ~ can be determined. 

a) Let I = I 0 = const. Substituting the second equation (3) in the first, we obtain 
a nonlinear differential equation in p, whose solution has the asymptotic form in the limit 
t + ~ 

p =  p Z o t + % + - - ~ + ~ ( ~ _ ~ )  t~O , ( 1 7 )  

Using Eq. (16), from Eqs. (2) and (3) we find 
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$ 
co ,v klpIo ((v - t ) B )  t, e ~ -  ey ~ 0 ( l / t ) ,  

i.e., the characteristic relaxation time decays in the limit t ~ ~ as l/t, so that the gas 
tends to equilibrium, and ev* - e v decays more rapidly than i/t. For the function ~ (t) de- 
scribing the behavior of weak disturbances in the linear approximation we obtain the asymp- 
totic representation 

- -  3 {?Rf~llP3tWS~-O(t4/a))] ,  ( 1 8 )  

which differs significantly from the equilibrium case I = 0, in which ~0(t) ~ exp(-t.const), 
t + =. According to relation (18), the integral X characterizing the qualitative behavior 
of nonlinear disturbances converges in the limit t + ~ for both plane and cylindrical waves. 

b) Consider the behavior of weak disturbances in a gas whose vibrational degrees of 
freedom are elevated to the excited state (ev0 - ev0*) without external radiation (I = 0). 

Relaxation subsequently causes the pressure and translational temperature to increase and 
the vibrational energy to decrease. We assume that T is high, 8v/T is small, and in the 
first approximation ev* = p/o. This approximation is valid for a number of diatomic gases 
at high pressures, when a large difference exists between the characteristic vibrational 
temperature 8 v and the temperature at which dissociation processes are essential [Ii]. We 
can disregard the dependence of m on T I/3 and assume that ~ = k3T and k~ = const, provided 
that the range of T is not too great. The system (3) is integrable on the basis of these 
assumptions : 

[e t + ~ (? - ~{) [ ,v o -- f v j  
p(t)  = 790 i + ~ e x p ( - - o ~ t )  ' 0r = k~PoT(i -}- 5), 5 = . ( 1 9 )  

?%0 

Substituting Eq. (19) in (6), we have 

< >) ( t ) = e x p  - - T  ~ 3 7 2 - 2 7 + 2 1 n  t + 5  
472 l + 6 e x p ( - - a t )  ' " ( 2 0 )  

The first factor in Eq. (20) is an increasing function of time, and the second is a decreas- 
ing function. The function ~(t) decreases with time if 6 ~ 5m = 2(~ - i)~/](u + 2); for 
6 > 6 m it increases up to a time t = tm, which is given by the expression 

I In (5 2(--r +--2--) ] 
tm ---- Y (1 + 5) to o 2 (7 - -  1)2] ' 

and then decreases, tending to zero in the limit t + ~. Bauer and others [1-4] have previ- 
ously mentioned the possibility of the amplification of harmonic waves propagating in a ho- 
mogeneous gas with fixed parameters, which sustains nonequilibrium at a constant level 
through the balanced transfer of energy into internal degrees of freedom and by outgoing 
heat transfer. 

Substituting t m in Eq. (20) and expanding~(t m) in a series with respect to the small 
parameter (~ - i)2/2y 2, we obtain 

(~ )(~-i) ~ [(~-i)~I ( t i n ) = 1 +  < - i  ~ + o  (2i) 

The requirement that the second term on the right-hand side of Eq. (21) must be small in 
comparison with unity can be regarded as a criterion of linear stability of the state of a 
vibrationally excited gas under acoustic disturbances. This criterion states that the ini- 
tial relative nonequilibrium must be small: 

, << t + O  
Y0 (? -- I) (2 q- ?) 

For nonlinear disturbances with a shock wave, according to Eq. (20), the integral X 
converges for both plane and cylindrical waves, so that the path of the shock wave has a 
characteristic as its asymptote, and the length of the waveform adjacent to the discontinu- 
ity is bounded in the limit t ~ ~. We emphasize that growth of the disturbances leads to 
the magnification of nonlinear effects and rapid shock generation, whereupon nonlinear the- 
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ory must be invoked in order to describe the evolution of the disturbance. For example, 
whereas the amplitude of a plane wave increases directly as t in the linear case [~(t) ~ t 
at t > 0], in nonlinear theory, according to Eq. (14), the amplitude of a plane wave with a 
triangular waveform remains small and, according to Eq. (16), the amplitude of a sawtooth 
decays as i/t. 

We now consider steady supersonic planar flows of a gas that admits the excitation 
of vibrational degrees of freedom; such processes differ very little from one-dimensional 
flows. They can occur, for example, in flow around slender bodies with moderately super- 
sonic velocity at a small angle of attack or in flow through ducts with slight wall rough- 
ness. We choose the coordinates x, y so that the direction of the x axis coincides with 
the freestream direction. We assume that the gas flow is exposed to external radiation of 
intensity l(x) in some interval x I < x < x2; l(x) =- 0 at x # (xl, x2). We write the system 
of equations describing supersonic planar flow of a vibrationally relaxing gas in the char- 
acteristic form 

~__~= _ ~, _z~_ : 7 ~ •  ~+~ V M =p - l..d= ~• = ~ F  (,~ - t) (~: ~ V ~  - t - ~), 

uv• a' ] / ' ~ - - 1  do/U'+V'~ , 1 doP (22) 
= tt2 a2 1, ~X k ~ 1  "t- -'~'~Z = 0  , 

doP a 2 do9 pF doe v 
d= - f f~ .=( ' l , - - ! )T ,  u--~7=I F, a~ - -  - d . ;  = - ~  

(u and v are the projections of the velocity onto the x and y axes, and M is the local Mach 
number; v ~ 0 when disturbances are absent). The first equation of the system (22) is writ- 
ten along an acoustical characteristic of the first or second family, which is described by 
the second equation (the upper sign corresponds to the first family, and the lower sign to 
the second family), and the next three equations are written along streamlines that obey the 
last equation. 

We consider the linear problem of a steady-state supersonic flow disturbance concentrat- 
ed in a narrow zone of width X between two acoustical characteristics of the first family. 
If X is sufficiently small, the disturbances obey the same relations as at a weak oblique 
shock [17]: 

u ' + v / V M ~  9~176  p ' - - a ~  e;~=0 (23) 

(v' E v, since v ~ = 0). In the linear approximation the wave front coincides with a charac- 
teristic of the acoustical family. The short-wave approximation has the significance that 
the discrepancies in Eqs. (23) are proportional to those segments of the characteristics of 
the system (22) (acousticalsecond family and streamline) which are contained in the per- 
turbed zone, i.e., the discrepancies are proportional to X and are small if X is sufficiently 
small. 

Linearizing the first equation of the system (22), in which the upper sign is chosen, 
and substituting Eq. (23) into the result, we obtain a linear differential equation, whose 
solution can be represented in a parametric form analogous to Eq. (6): 

; ) S u'(x, yo)=Uo(Yo)exp -- 7--1 A,(~)d~ ~---Uo(Yo) q),(x), y - - y  ~  d~ 
o 2a02 (~---~ V Mo2 (~ ) - - t  

�9 = o = o  (.o 
A, (x) ---- aO (MO2 __ t ) (eiv - -e  ~ "4- (-V J 8T ] 

) /ev*~ ~_ .... (~M~ 
+ ? ( T  I)[~) exp uI2toO(MO2_l ) . 

+ 

, yO (0, Yo) ---- Yo, 

(24) 

The subscript zero is used everywhere to indicate the values of the parameters at x = O. 
The acoustical characteristics of the first family, at which u 0 ' ~ 0, pass through points 
of the segment [Y01, Y0=] of the y axis. 
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In Eq. (24) the functions M~ and A,(x) are expressed in terms of the freestream 

parameters, which are given by the relations 

+ Y ? -- t u ~ (~) 
0 

The substitution u ~ = u0(l + A) reduces the system (25) to the equation 

(25) 

dx 2 0 2 - - I )  ~o~ (^) (M~) + M o (V + t) A 
(26)  

If the denominator on the right-hand side of Eq. (26) is equal to zero, the instantane- 
ous value of the freestream Mach number M~ becomes equal to unity. We assume that the 
flow is supersonic everywhere [M~ > i] and, accordingly, that A > -(M02 - l)/((y + l)M02); 
this assumption corresponds to not too large values of the energy input to the gas on the 
interval (xl, x 2) and is valid in all cases of practical interest. Including first-order 
small terms in the acoustical characteristic equations, we have 

dy _ t __ M~ + i) 
dx FMO2__ i 2aO (MO2 __ 1)3/2 U'(X'Yo)" (27) 

Substituting relations (23) in Eq. (27) and integrating, we obtain 

y(x, Yo) = Y~ x, Yo) +u'o(Yo)X,(x), X , ( x ) =  • + t  [ M~ d~ (28)  

h shock wave is generated at the point of intersection of the characteristics (28), 
which is determined from the condition By/By 0 = 0 or, rewriting it in a form similar to (9) 
on the basis of Eq. (28): 

t -b (du'o/dyo) X,  (x) = O. (29)  

Inasmuch as the gas is irradiated only in the interval xl < x < x 2, the state of the 
gas approaches equilibrium with increasing x, the function ~, decays exponentially in the 
limit x § =, and the integral X converges. In this connection, according to Eq. (29), a 
steady-state disturbance superimposed on supersonic flow contains a shock wave only when 
the initial waveform u0'(y 0) has intervals of large growth: 

i 

duo ~ > 
- - >  -- lira O. (30) 
dYo x ~  oo X ,  

If condition (30) is not statisfied, a shock wave does not exist. This implies, in particu- 
lar, that supersonic flow of a vibrationally relaxing gas over a concave wall of small cur- 
vature is not accompanied by the formation of a shock wave (Fig. 2). 

The x dependence of the shock wave amplitude is found in the same way as in the unsteady 
case. Specifically, the shock equation Y0 = y0(x) in the Lagrangian coordinate system Y0 as- 
sociated with characteristics of the first family can be deduced from an equation analogous 
to Eq. (II): 

(Oy/@o) (dyo/dx) + @/Ox = D, (3 I)  

[3y/Sx and 0y/Oy 0 are determined from Eq. (28), and D, is the half-sum of the characteristic 
velocities before and after the discontinuity]. We multiply Eq. (31) by u0'(y 0) and inte- 
grate: 

Y02 
r 12 

2 Uo(~)d~=X*(x)uo (Yo)" (32)  
YO 
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Fig. 2 Fig. 3 

It is assumed in the derivation of Eq. (32) that the preshoek perturbations are equal to 
zero: u 0' = 0 at Y0 > Y0= (Y0= is the coordinate of the shock wave at x = 0). Solving 
Eq. (32) for Y0 and substituting the result together with Y0 in Eq. (28) and in the first 
equation (24), we obtain the shock equation ys(X) = y (x, Y0(X)) and the law governing its 
amplitude variation [u'](x) = u0'[Y0(X)]@,(x). Since the integral X, converges in the limit 
x + =, we infer from Eq. (32) that the shock wave has an acoustical characteristic of the 
first family as its asymptote; the initial point Y0* = Y0(=) < Y02 to the limit x + = and 
specifying beforehand the initial waveform u0'(y 0) of the disturbances. 

We now discuss steady supersonic flow over a slender shape, which is symmetrical about 
the x axis and has an attached shock wave at its initial point; the perturbations induced 
by the shape in the flow are linear in Y0: u0'(Y0) = k,y0, Y0 ~ Y02 (Fig. 3). Solving Eq. 
(32) for y0 and substituting the resulting function y0(x) in Eqs. (24) and (28), we have 

r 

' , % ( % ~ ) X . ( x )  (33) % (Vo~) ~,  (x) y~ (x) = v ~ (x, Yo~) ~ V t  + k ,x , (~)  
[u'] (x) = -VI + k ,x , ( x )  ' 

As an example, we consider the special case in which I -= 0 at x > -L, a slender convex 
body is encountered in the cross section x = -L, vibrational degrees of freedom are excited, 
and the temperature and pressure of the gas are sufficiently high, so that the assumptions 
ev* = p/p and m = k3p can be made in the first approximation. Changing the variable of inte- 
gration in Eq. (24) by means of Eq. (26), we then obtain 

A 

In  ~ ,  - ~ 2 ( ~ ,  - ~ + <~ + ~) M ~ )  (~ - ~ M ~ )  + 
0 \ 

~(27 t _ ~,~M2_ 37_--1 , , ~ /  ) 
- -  - " " o  2 . " ~ o . ]  - -  7,3 

If 6 ~ 6m* = 2(y - l)2(M02 - i)/(372M02 + 37), then ~, decays with increasing x, but if 6 > 
6m*, we find that ~, increases to the value T*m and then begins to decrease. In this case 

2 (~MX + ~ --  2v) + 0 ((V - -  tp) .  ( 3 4 )  

The smallness of the second term in Eq. (34) in comparison with the first term can be taken 
as a criterion of linear stability. 

We note that a disturbance which contains discontinuities and grows from the standpoint 
of linear theory can decay in the nonlinear approximation. For example, according to Eqs. 
(33), the shock wave amplitude remains small for ~, ~ x. 

The authors are grateful to V. A. Levin for attention. 
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